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SUMMARY

The stability of liquid layers with a prescribed interface geometry
in the presence of surface tension and unidirectional body forces is
investigated theoretically by means of a small vibration analysis.

The fluid of the layers 1s assumed to be incompressible and inviscid and
the flow irrotational. Particular emphasis is given to the effects of
geometry and unidirectional body forces on the stability of such layers.
They are studied by means of a semi-inverse method which allows the
exact determination of particular eigenvibrations.

Following the classical method of investigating the stability of
systems, we establish the equations of motion for small perturbations
of the equilibrium configuration and formulate the boundary conditions
for both two- and three-dimensional layers with interface surfaces
having a constant mean curvature. We linearize the pertinent equations
and express them in terms of the velocity potential. By separating the
time and space variables, the vibration problem is reduced to an eigen-
value problem. Exact eigenvibrations are sought by considering solutions
to Laplace's equation which contain a number of free parameters. The
arbitrariness of these parameters 1s reduced by enforcing the solution
to satisfy the interface boundary condition. Integrating the differential
equation of the streamlines defined by such solutions and requiring the
solid supporting surface to constitute a streamline, we arrive at rigorous
vibration solutions. If we introduce sufficiently many free parameters
we are in a position to review exact vibration solutions corresponding
to a family of liquid layers with the same interface surface and differ-
ent solid supporting surfaces and thus different thickness distributions.

The stability criteria of the layers are presented in terms of
inequalities involving the magnitude of either the unidirectional body
force, g, or the nondimensional stabllity paremeter W = 'I‘/pga2 in
which T denotes the surface tension, p the fluld density and "a"

a characteristic length of the liquid layer. It is shown that the
variation of the thickness of a fluid layer may significantly influence
its stability, especially for body forces in the near-zero region. The
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results also reveal that for some solid supporting surfaces, layers of
the type considered are ounly stable if the body forces are larger than
a certain positive value, while for other surfaces stability prevails
as long as the body force exceeds a certain negative limit value. This
fact may be utilized in the design of containers of fluid for near-zero
gravity conditions in such a manner that the fluid adheres to a certain

area of the container.

The interpretation of the results obtained in this analysis is
suvJect to the restriction that the dimensions of the interface surface
be large compared with the effective range of the contact forces, since

no contect angle considerations have been introduced in explicit form.

- 111 -



II.

III.

IvV.

VII.

TABLE OF CONTENTS

Introduction . . « v v ¢ © ¢ ¢ v b 0 e v e e e e e e e
Basic Equations . . . . ¢ . v ¢ ¢ v o v e s e e e .
Semi-Inverse Method of Finding Exact Eigenvibrations . . .

Eigenvibrations and Stability of Two-Dimensional Layers
with Flat Interface . . . . e PN .

L.1. Rigorous solutions to free vibration problem . .
L.2. Stability criteria . . . « ¢« ¢« + v ¢ o v o v .

Eigenvibrations and Stability Criteria of Three-Dimensional
Layers with Flat Interface . . . - . e e e

On the Stability of Ilayers with Uniformly Curved Interface
6.1. Two-dimensional layers with curved interface . . . .
6.2. Two-dimensional layers with slightly curved interface
6.3. Three-dimensional layers with curved interface .

6.4. Three-dimensional layers with slightly curved
interface . .

Conclusion .
References .

FigUres » ¢ ¢ v v v v v v e e e e e e e e e e e e e

- v -

11

14

18
20
22
2k

28
29



A,B,C,D,E
An,Bn,Dn

F(t)

F(r)z ) ,x(x),Z(z)

H

h

i

k,4,p, ‘:n’Pn

d|

NOTATION

Constant coefficients
Coefficients of infinite or finite series
Arbitrary function of time
Functions introduced to separate variables
Mean curvature i 11 . 1

" 2Ry Rp
m'? order Bessel function of first kind

Associated Legendre functions of degree m and
order p,

Principal radii of curvature of the interface surface

Bounding surface (interface surface equation Sl = 0;
rigid surface equation 82 = 0)

Surface tension

Radius of equilibrium interface surface or nondimensional

depth of fluid layer with flat interface surface at
x=0 or r=0

Half length of finite flat uniform fluid layer
Magnitude of body forces

Characteristic length of layers

Ny

Constants used in separation of variables

Body force

Integers

Unit vector normal to rigid surface 82

Pressure in fluid

Ambient pressure distribution at equilibrium interface
surface
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Notation (cont'd)

Polar coordinates

Cylindrical coordinates

Spherical coordinates

Nondimensionel radius of axially symmetric flat inter-
face, also nondimensional radius at € = O of the
rigld supporting surface 82 of layers with curved
interface

Time

Fluid veloecity

Rectangular coordinates

Non-dimensional length parameters x = % y Z = %

2x, = non-dimensional length of two-dimensional fluid
layers with flat interface at 2z =0

Velocity potential

Potential function in terms of space variables
Potential of body forces

Largest angle subtended by layers with curved interface

Coefficient of infinite series

h ., &8
g g

First order small perturbation of interface surface

Free parameter

Stability paremeter = -JLE s or T2
pgh pga

Density of fluid

Frequency parameter (square of eigenfreqpency)
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I. INTRODUCTION

The significance of the phenomenon of interfacial instability of
liquid layers in certain ablative heat protection problems, as well as
in the behavior of fluids in containers under near-zero gravity condi-
tions, has been repeatedly pointed out.(l-s) The theoretical analysis
of this phenomenon has so far been largely restricted to layers of ex-
tremely simple geometry, in particular to layers with a uniform
thickness.(h-ll) In this investigation we consider layers with a non-
uniform thickness and interface surfaces with a constant mean curvature.
With the aid of the results of a recent study of the effects of curvature
and unidirectional body forces on the stability of liquid layers(a) and
the application of a semi-inverse method of finding exact solutions to
the free oscillation problem of a fluid in a container(12 we derive

stability criteria without resorting to approximate methods.

As in reference (2), the density of fluid separated by the interface
from the layer under consideration is taken as zero while the fluid of
the layer 1s assumed to be incompressible and inviscid and the flow
irrotational. Moreover, we again define the equilibrium configuration
of a liquid layer as stable whenever any initial disturbance of suffic-
iently small amplitudes and velocities leads to a motion in which the
amplitudes and velocities remain arbitrarily small. Also we assume that
the eigenfunctions corresponding to the free vibration problem are com-
plete, which allows us to express the motion of the fluid due to any
initial disturbance as a linear combination of the eigenvibrations. We
therefore may deduce as the necessary and sufficient stability condition
that all the eigenvalues (squares of the eigenfreqpencies) be real and

positive.

For layers of uniform thickness spread over various portions of the
exterior or interior of cylinders and spheres the stability criteria
could be presented in terms of inequalities involving the magnitude of
either the unidirectional body force, g, or the nondimensional stability

parameter
T

= P




in which T denotes the surface tension, p the fluild density and a

the radius of the equilibrium interface surface. With these layers it

is consistently the first antisymmetric eigenvibration which leads to

the stabllity criterion, since the corresponding eigenfrequency ceases
first to be real when we vary the body force (or stability paremeter)

and start out with a value for which the equilibrium is stable. We
anticipate that this fact also prevails in layers with a variable thick-
ness and therefore limit ourselves to determining only the eigenfrequency

of the first antisymmetric eigenvibration.

While exact analytical solutlons to the small vibration problem of
layers with a nonuniform thickness can in general not be obtained, it is
nevertheless possible to determine rigorously one single eigenvibration
in certain cases by means of a simple semi-inverse method. 12 By
choosing to find the first antisymmetric free oscillation with the aid
of this method and comparing the results for various layers, we can
study the influence of the thickness variation on the stability.



II. BASIC EQUATIONS

We consider layers of an incompressible liquid which are bounded by

a rigid wetted surface 82 and an interface surface Sl' The interface

S1 separates the fluid of the layer under consideration from a neigh-

boring gas or fluid of zero density. Any motion of the liquid is assumed
as irrotational, which allows the velocity ¥ to be expressed with the
aid of a velocity potential & as

T= -7 (1)

Denoting the Laplacian by Vz, the equation of continuity has the form

o =0 (2)

We consider the presence of a body force k per unit mass which can be
derived from a potential f such that

K= -va (3)

Assuming the fluid as inviscid and having a density p, a pressure p,
we may express the equilibrium in the sense of d'Alembert in the form

(5o -2t 8

Integrating Eq. (4) and denoting by F(t) an arbitrary function of time
we obtain Euler's equation

5+o(9-g%+%v2)=F(t) (5)

Without loss of generality we may include F(t) 1n the time variance of
®. In addition to this we may linearize (5) for small flow velocities
by neglecting the term (1/2)pv2, which reduces equation (5) to

- L
5-0(3-9) (6)
The kinematic boundary condition of the fluid layer can be written in

the form



DS
3‘E=0 (7)

§=0 (8)
represents the equation of the bounding surface in question.

Denoting the surface tension by T and the external pressure by
P > the dynemic equilibrium of the interface surface S1 can be
expreseed as

- 1 1
p-pe—T<Rl+R—2)§2TH (9)
where R, and R, are the principal radii of curvature and H the

mean curvature. (The radii of curvature are taken as positive if the
center of curvature lies within the fluid.)



III. SEMI-INVERSE METHOD OF FINDING EXACT EIGENVIERATIONS

In investigating the problem of the free oscillations of an
incompressible fluid in an axially symmetric container, considering
exclusively flat interface surfaces and neglecting the effects of
surface tension, B. A. Troesch(le) made use of a semi-inverse method
vhich ylelds a rigorous solution for one of the eigenvibrations. We
apply the basic idea of this method to our fluid layers in the following

manner -

Instead of prescribing the geometry of a layer completely, we
merely select the shape of the interface surface in a suitable manner.
For appropriately chosen solutione to laplace's equation which contain
sufficiently many free parameters it is possible to satisfy the inter-
face boundary conditions in the presence of surface tension and body
forces. By establishing the streamlines defined by such solutions and
requiring the solid supporting surface to constitute a streamline, we
are in a position to review rigorous vibration solutions corresponding
to a class of liquid layers with the same interface and different solid
supporting surfaces and thus different thickness distributions.

It should be noted that the selection of the shape of the interface
together with the body forces and surface tension define a certain
ambient pressure distribution, the feasibility of which can be dealt
with separately.



IV. FEIGENVIERATIONS AND STABILITY OF TWO-DIMENSIONAL LAYERS WITH FLAT
INTERFACE

4.1. Rigorous Solutions to Free Vibration Problem

We refer the layer to Cartesian coordinates (x, z) such that for
static equilibrium the interface surface is characterized by 2z =0
(See Fig. 1). During the motion resulting from a small disturbance the

interface surface S, deviates from its equilibrium position by a small

1l
distance £(x, t) and the equation for S1 assumes the form

§,(x, z, t) =z - t(x, t) =0 (10)
With Eq. (10) the mean curvature H of the interface surface is given

by

2

_ 1 _ 3"
TR (x, t) T 3/2
2 St \2
L)

We assume that f(x, t) as well as its derivatives are of first order

2H (11)

small and neglect all terms which are of second or ﬁigher order small.
Thus Eq. (11) reduces to

oH = = 5 (12)

We shall restrict ourselves for the present to unidirectional body forces
with the potential

Q =gz (13)

Substituting Eqs. (12), (13) and (6) into the dynamic boundary condition
(9) we obtain

2
P [g% (x, 2z, t) - 82] - p(x) = -T 8x, t) axe L (%)
X

-6 -



With Eqs. (1) and (10) the kinematic boundary condition (7) can be
written in linearized form as

§§=~§§ (15)

By differentiating (14) with respect to time and making use of (15)
we can combine the kinematic and dynamic boundary conditions at the

interface surface into a relation for the velocity potential

2 3

Q70 a¢) 970
o} __—+g$ =T
(6t2 z axzaz

With the aid of Eq. (2) we can write this combined boundary condition

also in the form

o . 30 3%
p(-a-t—2+g3;>+T;-g =0 (16)

Neglecting consistently terms which are of second and higher order small,
we may require (16) to be satisfied at the equilibrium interface z = O,
rather than at the disturbed interface z = {(x, t). ‘

Since we are seeking solutions in the form of harmonic oscillations

we separate the space and time variables according to

o(x, z, t) = ¥(x, z)eer t (17)

and thereby reduce the initial-boundary value to an eigenvalue problem
with ¥(x, z) as eigenfunction and o as eigenvalue. By substituting
(17) into (2) and (16) we find

2 2
Y L %%
+ == 0 (18)
5;5 822
and
vred¥ 3
p (=-o¥ + g 5= + 7T - =0 (19)
oz 220



We note that the eigenvalue problem for ¥ isof a special type since

the eigenvalue appears exclusively in the boundary condition and not

in the differential equation and since the boundary condition (19) con-
tains derivatives of higher order than does the differential equation.

With the transformations

X = 3 Z =

i
o [

where h 1is a characteristic length of the layer, we can rewrite

Eqs. (18) and (19) in terms of nondimensional space parameters

2 2
Y . Y
— o cm— 0 (18|)
el T
) Ry
-B¢‘+-a—z te= = 0 (19*)
Bz ;:0
where
B=T ana pe-2e (20)
g pgh2

For the sake of convenience we replace again x by x and z by =z
with the understanding that x and 2z are now nondimensional length

parameters. The eigenvalue problem can thus be presented in the form

2 2.
a_g+a—-g=0 (18)
ox 9z
- AN "
-f Rl R =0 (19")
Jz 20

We consider now the class of exact solutions for ¥ which can be obtained

by separating the space variables:
¥(x, 2) = xX(x)-2(z) (21)
By substituting (21) into (18) we deduce

-8 -



.. B (22)

whereby k2 may assume positive as well as negative values. We consider
first k # 0. According to (22) ¥ must be of the form

#(x,z) = [A sinh(kx) + B cosh(kx)] [C sin(kz) + cos(kz)] (23)

if k # 0. By requiring expression (23) to satisfy the interface boundary
condition (19" ) we obtain

B+ k(1 - uk2)C = 0 (24)

Since the solid supporting surface 82 of the layer must constitute a
streamline, S, is given by

2

v#-n =0 (25)
or

%-Z dz - g%r ax = 0 (26)

where T is the normal vector of the surface. Integrating (26) by making
use of Egs. (21), (22) and (23), we find

X'(x):2'(z) - E

S2(x,z)

k2[A cosh(kx) + B sinh(kx)]-[C cos (kz) - sin(kz)]-E=0 1)

where E 1is a constant.

If we restrict ourselves to layers which are symmetric with respect

to the z-axis, we have
B=20
Hence the eigenfunction and the solid surface 82 are given by

¥(x,z) = A sinh(kx) [C sin(kz)+ cos(kz)] (28)

and
8,(x,2) = cosh(kx)[C cos(kz) - sin(kz)] -E=0 (29)

-9 -



where E 1is a new constant. We specifically consider the following
three cases:

(a) E=0

In this case the layer is of uniform depth and bounded by the solid

surfaces X = txo and 2z = -a as 1llustrated in Fig. 2. The

corresponding value for k 1is purely imsginary

k = 12 (30)
and
2n - 1
Xg =3z T 4> 0, n = integer (31)
C = -1 tanh(Za) (32)

Substituting (30) and (32) into (24) and (28) we obtain a simple
relation for the eigenvalue ¢ and the corresponding eigenfunction:

8 - gh = 2(1 + ut®) tanh(Za) (33)

¥(x, 2) = D sin{4x) cosh[£(a + z)] (34)

b) E#0

The parameters C and E in Egs. (29) may be determined for ex-

ample by requiring the surface S, to pass through the points

2
(0, -a) and (xo, 0). Thus we find for an arbitrary k (real or
imaginary)
oh 2 in(ka)
P = g - k(1 - k) cosh(k;o?-cos(ka) (35)
cosh(kxo) - cos(ka)

Sz(x,z) = cosh(kx) |cos(kz) - =To(ka) ain(kz):] -cosh(kxo)=0
¥(x,2) = D sinh(kx) [cos k(ﬁ +2) - cos(kz)cosh(kxo)] (36)

Representative layers corresponding to various values of k are
shown in Fig. 3.

- 10 -



(¢) k=0

In this case the solution to (18) is of the form

¥(x, z) = (Ax + B)(Cz + D)
and the interface boundary condition (19" ) is satisfied if
C =8D

Considering only layers which are symmetric with respect to x =
we require
B=0

The integration of (26) leads to the expression

2
D 2
Sz(x,z) = (z + E) -x -E=0

Choosing the values of (D/C) and E such that the surface s,

contains the points (0, -a), (xo, 0) we obtain

-8 - 28
=B = 5, 2
a xo

ol

and layers as illustrated in Fig. k.

4.2. Stability Criteria

Assuming that the liquid layer under consideration has finite
dimensions and a complete set of eigenfunctions *l’ Wé, oo ﬁh, .
we may express the motion of the fluild due to any initial disturbance

in the form

from which we immediately derive
% resl, % >0, n=1, 2, ...

as the necessary and sufficient stability criterion.

- 11 -
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We apply this criterion to the eigenvibration obtained in a rigorous
manner in the previous section and we consider again the three different
cases: E=0, E# 0, and k = 0.

a) E=0

Requiring o> O 1in (33), we deduce

g(1 + wf) > 0 )

With Eqs. (20), (31) and
xo = E (1*5)

where 2b is the width of the layer [See Fig. 2] we can reduce
(44) to the classical result

°
g te)
(b) E g 0

From Eq. (35) follows
0> 0 if gk(l- pkd)sin(ka) > O (47)

We note that Egqs. (35) and (36) do not change if we replace k by
-k and may therefore restrict ourselves to positive values of k.
Since the slope of the solid surface 82 at x = Xy 2 = 0 1is
given by

_ sinh(KX0)sinh(ka)
B cosh(kxoﬂcoah(kxo) -cos(ka)]

g8

x=x0
2=0

its sign is the same as that of sein(ka).

This means that we have a convex solid surface for sin(ka)<O
and a concave one for sin(ka)> 0. Hence considering positive as
well as negative values for g we may restrict ourselves to
sin(ka)> 0 without loss of generality. We obtain as stability

condition
12 -



0> 0 if ,}ﬁ > %‘; [sin(ka) > 0] (48)

Similarly, we deduce for k = 12

2
>0 if &5>-£2- (49)
n

In this case it immediately follows from Eq. (hl) that

6>0 if g>0 (50)

For a real k the layers are only stable if the body forces exceed a
certain positive limit value while for an imaginary k the bocy forces
may come close to a certain negative limit value before instability is
reached. We conclude from this that the variation of the thickness of

a liquid layer may significantly influence the stabllity criterion.
Besides this, we may utilize this fact in designing containers of fluids
for near -zero gravity conditions in such a manner that the fluid adheres

to a certain area of the container.

- 13 -



V. EIGENVIBRATIONS AND STABILITY CRITERIA OF THREE-DIMENSIONAL LAYERS
WITH FLAT INTERFACE

As illustrated in Fig. 5, we refer the layer t» cylinder coordinates
Z, r, © such that for equilibrium the interface surface Sl is defined
by 2z = 0. Denoting the deviation of the interface from its equilibrium

position by {(r, ©, t) we may write for the surface Sl

Sl(z; r, 6, t) =z - t(r, o, t) =0 (51)

and its mean curvature in linearized form

2 2
m o (Ge1B 5 (52)
r r 06

As before, we assume the presence of body forces whose potential is de-
fined by Eq. (13). The combination of the dynamic and kinematic boundary

conditions leads to

2 3
CR 2°¢
p +g + T =0 (53)
(bt Z) 2°|

We separate the time and space variables according to

iNo t

o(z, r, 6, t) = ¢(z; r, O)e J- (Sh)
If we refer the length parameters again to a characteristic length h

we may interpret 2z and r as nondimensional quantities and define the

eigenvalue problem for ¥ by

¥ 1,1 3%, (

1 1Lo¥ 9% 55)

a2 T B 52

B*-%‘-ua—sg =0 (56)
‘ oz =0

Exact solutions for ¥ can be obtained in the form

- 14 -



¥z, r, 0) = F(z, r)e’™® (57)

vhich requires F to satisfy the equations

n
[o74
n

32

10F m F
> +;8;-;-2-F+a?=0 (58)
3
or-E.u2E Lo (59)
dz
2=0

Considering first such functions which permit an additional separation
of variables, we find

F(z, r) = Alcosh(kz) + B sinh(kz)]Jm(kr) (60)

where Jm(kr) denotes the mtP order Bessel function of the first
kind and k the separation parameter. The substitution of (60) into
(59) leads to

B =2 - x(1+ w)B
or

o= % k(1 + uk2)B (61)

The stability conditions are

> g > k2

k>0, 13<o,T <-;§ (62)

and the corresponding equation for 82
I (kr)
k>0, m> 0, £n[sinh(kz)+ B cosh(kz)] -k fTZ'T dr+C=0 (63)
0 5r

Layers with solid surfaces defined by (63) are illustrated in Figure 6.

We consider the following special cases

- 15 -



(a) F,=0, F =0

Requiring S, to contain the points (0, -a) and (ro, 0) we

2
have in this case a layer of uniform thickness bounded by the surface
o (See Fig. 7). The relation for the

eigenfrequencies corresponding to mode shapes as defined by (60) is

z = -a and the cylinder r =r

o= % k(1 + uk>)tanh(ka) (64)

where the possible values of k are given by
Ji(kro) =0 m=1, 2, ... (65)

From (64) we £ind the stability condition

2
%»1‘? (66)

which indicates that the lowest value for k is most significant: m =1,
kry = 1.85.

b) k=0

In this case the velocity potentisl can be written in the form

¥(r, z, 8) = Ar™ (z + B)el™, mfo0 (67)

The interface boundary conditon (59) yields

1
B=x= 68
B (68)
and the equation of the solid surface 82 becomes
1 2 1.2
Se=m<-2-z +Bz)--ér +C=0 (69)

By requiring the surface S, to pass through the points (r =0,
z =-a) and (r = Tgr 2 = 0) we find
a%m + ro

B= _WQ (70)



and

2 2
2 am-+r P 2
Szgmz + . z+rc-r =0 (71)

From (68) and (70) we obtain as stability condition
g>0 (72)

which holds independently of m, To and a. Representative layers
defined by (71) are shown in Fig. 8.

As in the two-dimensional case, we conclude that the variation of
the thickness can markedly influence the stability of three-dimensional
layers with a flat interface, particularly for body forces in the near-
zero region. We also note that for some solid supporting surfaces 82
(container walls) layers of this type are stable if the body forces are
larger than a certain negative limit value while for other surfaces 82
the body forces have to be positive for stability. Moreover, we may
again suggest the feasibility of exploiting such a behavior in the

design of fluid contalners for near-zero gravity conditions.

-17 -



VI. ON THE STABILITY OF LAYERS WITH UNIFORMLY CURVED INTERFACE

6.1. Two-Dimensional Layers with Curved Interface

We refer the layer to cylindrical coordinates such that the equil-~
ibrium configuration is characterized by r = a as shown in Figure 9.
In the presence of a disturbance the equation for the interface surface

may be written in the form
8,(r, 8 t) =r - [a+t(e, t)]=0 (73)

In terms of cylindrical coordinates, the uniaxisl body forces are now
defined by the potential

Q = gr cos & (7%)

and the linearized mean curvature given by
2
1 1 t(e 1
2H = R s [1 - ) "3 8—2 g(e:t)] (75)

By combining the dynamic and kinematic boundary conditions as before, we
obtain

ad + 379 (76)

We again separate the time and space variables according to

o t

o{r,e,t) = ¥r,0)e (77)

and may interpret r as nondimensional length parameter by using "a"

as the reference length. Thus we arrive at the eigenvalue problem for

¥ gefined by

2
"W X 2
10w . 1 937
— = + = 0 (78)
are T or r2 ae2

- 18 -



3
Bw-g!cose+u(%!+aw2> =0 (79)
r r
drde
r=1
where B and K now abbreviate
n = T 5 and B = 22' (80)
g
pga
The streamlines can be obtained by integrating the relation
r g—;l;' ae = % %‘g ar (81)
Any function of the form
N
£y -y
¥(r,0) = z (r™ + A x " P)[B, sin(2,8) + Dy cos(£n8)] (82)
n=1

with arbitrary #n and N represents a solution to (78). In particular,

we may choose Zn =n and N = 3:
3
¥(r,8) = }: (™ + A r-n)[Bn sin(ne) + D cos(ne) ] (83)
n=1

We require Dn =0, n=1,2,3 and thus restrict our attention again to

the antisymmetric modes of oscillation. The substitution of

3
¥(r,0) = :;‘ Bn[rn + Anr'n]sin(ne)
n=1

into the interface boundary condition (79) leads to the relations
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B,/B, = A 3
Ay =1 - 28\

B,/B, = A + 2B[1 - M(B + 6u)] ) (84)

AlBl/32 =N -28[1 - N(B + 61)]

3 p

in wvhich N 1is an arbitrary parameter. If we select

A = 'B—%_EE (85)

we limit our analysis to a family of layers for which we can readily
derive a stability condition by replacing the abbreviations B and pu
in (85) by their original form and requiring o to be positive. We

deduce

a>0, g>-6ir-

2
na

a<0, g< éﬁg (86)
pa

With (85) the differential equation for the stream lines becomes

ar  r(Mr-rDsin 0+2[r2- (1-208)r 2lsin 26 + 3\(r3- r">)sin 36) (87)
® =
Nr+ r'l)cos 0+2[r2+ (1 -2xa)r'2]cos 20+ 3x(r3+ ;3)cos 30

Representative layers with such streamlines are illustrated in Figure 10.

6.2. Two-Dimensional Layers with Slightly Curved Interface

For such layers we may write
cos O =1 (88)

and as interface condition
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o I
BY « &= + ( + ) =0 (89)
o T\ S .

This condition is satisfied by

¥(r,8) = B(r’ + Ar")sin £9 (90)

for arbitrary £ 1if

i1+ u(f 1)) -p

A 3 (91)
L1 +u(£®-1)] +8
The corresponding stream lines are given by
2 -2
Blr’ - Ar "Jcos(£8) - C =0 (92)

where C denotes a constant. By choosing C = 0O we arrive at a family

of layers with uniform thickness and the same stability criteria as dis-
cussed in Ref. 2. For C ;l 0 we may require the solid boundary to contain
two prescribed points, e.g.

6 =0, T =Tg; =20, r=1

which determines A and C/B 1in (92):

rg - cos(4a)

a0 (93)
rc-) - cos(4a)
et it

-g- = ———_?l 0 cos( £x) (94)
ry - cos(2a)

By comparing (93) and (91) we find the relation

P 1- 50t 2

T
o=2 g+ =5 (£ - 1) (95)
81+ r(g)'c - Eré cos( 20) [ pa ]
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from which we can deduce the stability conditions

2
a>0 ry<1 pga . ;. 42
T
2 2
a<o0 ro>l: £>-%--a—<l-£

As a special case we consider £ =1 and A = 0. The substitution of
(93) and (9%) into (92) yields for the solid boundary

r cos B = Ty (96)

i.e., a flat surface. The corresponding velocity potential is given by

¥ = Br sin © (97)

Specific examples of two-dimensional layers with a slightly curved inter-
face are illustrated in Fig. 11.

6.3. Three-Dimensional layers with Curved Interface

In terms of spherical coordinates we may define the disturbed
interface by

Sl(r’ 8, P t) =r - [a+ t(e, 9, t)] =0 (98)
vhere r = a represents the equilibrium configuration as shown in Fig. 1l2.

The potential of uniaxial body forces is again given by (74). For small

{ the mean curvature may be written in the form 1

1 1 3t 3%t 1 822;):]
PH==|2-=(2t += cot 8 + L& 4 —— 2= (99)
a[: a ( 36 362 sin2e 8(02

A combination of the kinematic and dynamic boundary conditions for
the interface leads to

2 2 3 3
d°® 1 3 T a0 3¢ . J7¢ 1 )
o [S=+ cos 0 |- = 2 +cote + + =0
32 o or 2 | or 9138 3,367 6126 ardg”
r=8a
(100)
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The physical nature of the problem suggests a separation of the variables
according to

imQ eiJ? t

&r, 8, 9, t) = Wr, O)e (101)

in wvhich m denotes an integer. We may again interpret r as the
nondimensional length parameter, using the radius "a" of the equili-
brium shape as reference length. The eigenvalue problem for W is now
defined by

3 [2a¥ 103 X n>
3; (I' E> + —Bm % (Sin =] w) - 5 '¢T =0 (102)
sin” 6
and
) P 23%
B¥ - cos © 5 Yy 3 tr — =0 (103)
dr or r=1

The nondimensional quantities B and p are again defined by (80) and
the stream lines by (81). Exact solutions to the eigenvalue problems

are for example 1

P ~(pp*l) g
¥(r,o) =z A [r'P + Byr ]Ppn(cos o) (104)
n
in which Pgn represents the associated Legendre function of degree mn
and order P, (15)- The order P, is arbitrary while the degree m is

integer.

We consider a particular family of layers to which (104) represents
an exact solution by selecting

m=1, P, = 1, 2

or

[ 2]
[}

Al[(r + Blr-a)sin e + A.2(r2 + Bar's)sin 0 cos 6] (105)

This function satisfies the interface condition 1if
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- =2 =2
B,=-1, B, =73 A, 2 (106)
From (106) and (80) follows
== £
O=%K a (107)
For A2 >0, a>0 we find as the stability condition

g>0

layers representative for this family are shown in Fig. 13.

6.4. Three-Dimensional layers with Slightly Curved Interface

For such layers we have
cos O~ 1, sin 6= 6 (108)

and therefore as the continuity equation and the interface condition

2
g; <r2 gg) +.% gé (é gg) - §§ ¥=0 (109)
2 3
adr-gg-uér%’+r2§-—§f> -0 (110)
dr or rel

Solutions to Eq. (109) which satisfy the interface condition (110) can

be written in the form

¥(r,0) = [P + Ar-(P+l)]Jm[~/'p_(p_+i')‘ o] (111)
where
A - -B+p{l+ulp(p+1)-2]) (112)
+#8 +(p+1)(1+ulpl+1)- 2]}
and
p>0 .

The streamlines corresponding to (111) are

-24 -



(p+1) N ] FRTE )
P*l) _ , (R} P L
lnE' A(p)r = mdx+c (m>0) (113)
with C denoting a constant.

For C =0 we have a family of three-dimensional layers of uniform
thickness as illustrated in Fig. 14%. By defining the solid surface as

r=r., ©6=20a (xsmll) (114)
0

and requiring

M _W
¥ "% -

we obtain

- R porfl
A=sBe xS (115)

and

Iy Wp(p+1)al =0 (116)

The comparison of (115) with (112) leads to

2p+1
p(l-r5 )
o =i— 0 {g + —% [p(p + 1) - 2]} (117)
pa

P 2p+1l
l+p+lr0

with <1, and p > 0, we have

To

g+—25 [p(p+1)-21>0
ra

and therefore as stability condition

g>[2-plp+ 1)]-25 (118)
pa

Similarly, we find for To >1
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g < [2-p(p+1)] -02—2' (119)

It should be noted that for a given Q the parameter p 1is determined
by (116). According to (118) and (119) we obtain the stability criterion
with the smallest value of p. The latter is given by the smallest root
of

33 Wp(p+1) al =0 (120)

The physical interpretation of this fact is that among all eigenvibrations
the first antisymmetric oscillation leads to the stability criterion since
the corresponding fregquency approaches zero first in varying the parameters
Ty p and g.

The stability criterion for an axially symmetric layer with a flat

interface, a uniform thickness and a radius b as shown in Fig. 7 is

T

g > -13.7 s
o(2b)

while that of the slightly curved layer of uniform thickness and the same
interface area (see Fig. 1k4) is

g > [:g§ - 10.7] . T
a (2bf P
As in the two-dimensional case
destabilizing effect.

(2)

we observe that the curvature has a

If C #0 1inEq. (113), we can interpret (112) as the frequency

equation for arbitrary values of p and A:

(,:;l; .[P_-_E%;.A_J {g+;§-§[p(p+l)-2]} (121)

For stability we deduce

R-(p*1A.6, .20, g2 -%[2-p(p+l)]

1 +A oa



p-(p+1A _,

S , 220, &S5 =5 [2-3(p+ 1)) (122)

Representative examples of slightly curved three-dimensional layers are
illustrated in Fig. 15.

If we assume p(p+1)e << 1, we may obtain approximate solutions to
the streamline Eq.(113) in the form

J Fry s a1 - ey

For m =1 we have

plp+t)e Jm(X) +1) 2
SALE)] d\ = =2 1n [} - RLBK-I 6:]

m

and thus
2
SE=EP+1_A &plr-] [1_2‘23’—1292] -

Requiring the solid surface to contain the points (r
(r = rgy ©= 0) we find

f.[omse o
(P+l){r [Pizn-—ll]

L}
o

(123)

(124)

o= (2o -[' B ) {r*’["‘%—l“%}
: [1212#2 92]2 - (rP- 2 [1-1’52,}‘—52&*{]2 =0 (125)

For p=1 and A =0 we have an approximation to the important case
of a layer on a flat surface

rcos & =rg
as shown in Figure 15b.
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VII. CONCLUSION

The results of this study clearly indicate a strong dependence of
the stability of all layers (two~ and three-dimensional) on the thickness
variation, especially in the realm of near-zero gravity conditions. Of
particular significance is the fact that for certain solid supporting
surfaces (container walls) the fluid layers are stable only if the uni-
directional body force is either positive or exceeds a certain positive
value, while for other surfaces stability prevails for limited negative
values of the body force. By taking advantage of this fact in the design
of containers of fluid for near-zero gravity conditions, it appears pos-
sible to enforce the permanent adherence of the fluid to a certain area

of the container.

It should be noted that we have not introduced any contact angle
considerations in explicit form in our analysis, and therefore we have
to require that the dimensions of the interface surface be large compared
with the effective range of the contact forces. Also, it should be point-
ed out that our stability criteria are conservative only if the "appropri-
ately chosen" solution to Laplace's equation actually leads to the
fundamental eigenvibration* whose eigenfrequency ceases first to be real
in varying the body force or stability parameter. Partial reassurance 1n
this regard is offered by the fact that our results include as special
cases the known stability criteria for layers of uniform thickness with

elther flat or uniformly curved interface surfaces.

*
Vibration with the lowest eigenfrequency.
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Disturbed interface
S, (x,z,t)iz-l;(x,t) =0
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S.(x,2)=0
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Fig.|. Reference Frame for Two-Dimensional
Layer with Flat Interface.
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Fig.2 Two-Dimensional Laoyer whose Free

Oscillations have the

locity Potential

®(x,2,t) = Dsin(/x)cosh [ (a +2)]- W
where ¢ =[(2n-1)/2]x(h/b).



S,,(a*l, x°'2, k'l)
S,,(a=1,x922.36, k=w/2)

Sei(a=l, xo=14, k=i)
Se, (021, x0=O7, k=2i)
(b) k imaginary

Fig. 3 Two-Dimensional Layers with Free Oscillations
Defined by ®(x,2,t) = Dsinh(kx){cosk(a+z)-cos(kz)
cosh(kx,)]ev@*; () k real, (b) k imaginary.

- 31 -



Fig. 4. Two-Dimensional Layers with Free Oscillat
Defined by ®(x,z,t) = Ax{I+[2a/(a*x8)jz} eV
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z‘g configuration

Disturbed inferface “fﬂ, R Gl
S,(rz,8,0)+2-L(r81) =0
A \' N
-

-
-——— -

T Teen”™ £
ah

’%:l e N8y(,2)20
T

Fig.5 Reference Frame for Three-Dimensional
Layer with Flat Interface.
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Fig.6 Three-Dimensional Layers with Free
Oscillations Defined by

&(r,2,6,t) = A[cosh(kz) + Bsinh(kz)J; (kr)e! @+
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Fig. 7 Three-Dimensional Layer whose Free
Oscillations can be Characterized by

&(r,z,0,1) = Acosh(ka +kz) Jm(kr)elm8+vo)
where Jm(krp)=0



Fig. 8 Three-Dimensional Layers with Free
Oscillations Defined by ,
&(r,2,6,t) = Arfz+(atr)/2a]e!8+va)

8=0
Disturbed interface Equilibrium
S(r8,t)=r- C_('G}t) =0 _ conf'!g%rahon

Fig.9. Reference Frame for Two-Dimensional
Layer with Curved Interface.
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\s [0 =09, 120625
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Fig. |10 Two-Dimensional Layers with Oscillations
Defined by

&(r,8,1)= B{Mr+})sin6 +[r*+(1-28\)r"*]sin26 +
MrP+r?)sin36}elve! where A=

{/l(ca/g +6(T/pga®)]}
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Curved Interface.
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Fig. 12. Reference Frame for Three-Dimensional
Layers with Curved Interface.
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Fig.13. Three-Dimensional Layers with Oscillations
Defined by

® = A[(r-r"*)sind +Ag(r+25r-¥)sinBcos]e!#+C1).
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Fig. 14 Three-Dimensional Layers with Slightly
Curved Interface and Uniform Thickness.

The Fundamental Oscillation of such
Layers is Characterized by

&= B[r°+-9- r2p*! r'“’*"] Jm ma]e“'“*'ﬁ"

p+l O

where Jm(+/plptNa)=0
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as above.
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